Study reveals new magnetic process that can lead to more energy-efficient memory in computers and other devices

Skyrmions as seen through magnetic force microscope imaging
Skyrmions on a fabricated device, as seen through magnetic force microscope imaging (Courtesy VCU Engineering)

Researchers at Virginia Commonwealth University and the University of California, Los Angeles have made an important advance that could lead to more energy efficient magnetic memory storage components for computers and other devices.

Magnets are widely used for computer memory because their “up” or “down” polarity — the magnetic state — can be “flipped” to write or encode data and store information. Magnetic memory is nonvolatile, so information can be stored on devices without refreshing. However, magnetic memory also requires a lot of energy. 

A recently discovered magnetic state called the skyrmion, which is neither “up” nor “down” but flower-shaped, offers a solution. Manipulating the skyrmion state allows for much more efficient, robust data storage for conventional computers and wireless smart devices. 

Dhritiman Bhattacharya.
VCU Engineering doctoral candidate Dhritiman Bhattacharya. (Courtesy photo)

“Our finding demonstrates the possibility of controlling skyrmion states using electric fields, which could ultimately lead to more compact, energy efficient nanomagnetic devices,” said Dhritiman Bhattacharya, a doctoral candidate at the VCU College of Engineering and the lead author of the paper, “Creation and annihilation of non-volatile fixed magnetic skyrmions using voltage control of magnetic anisotropy.”

The paper published in the June 29 issue of the journal Nature Electronics

Jayasimha Atulasimha, Ph.D., Qimonda Professor in the VCU Department of Mechanical and Nuclear Engineering, is Bhattachayra’s dissertation adviser and corresponding author of the paper. The finding outlined in the paper is “a steppingstone toward ultimately developing commercially viable magnetic memory based on this paradigm,” Atulasimha said. 

In 2016 and 2018, the VCU researchers showed that using an intermediate skyrmion state to force precise magnetic transitions between the “up” and “down” state could reduce errors in writing information to memory, making devices more robust to material defects and thermal noise. They hold a patent on this idea. The new proof-of-concept experiment presented in Nature Electronics is the first step toward making such a device. 

The research is funded by the National Science Foundation, the U.S. Department of Defense, the U.S. Department of Energy, VCU, UCLA and VCU’s C. Kenneth and Dianne Harris Wright Virginia Microelectronics Center.

The paper was authored by Bhattacharya, Atulasimha and UCLA researchers Seyed Armin Razavi; Hao Wu, Ph.D.; Bingqian Dai; and Kang L. Wang, Ph.D.

About VCU and VCU Health

Virginia Commonwealth University is a major, urban public research university with national and international rankings in sponsored research. Located in downtown Richmond, VCU enrolls more than 30,000 students in 233 degree and certificate programs in the arts, sciences and humanities. Twenty-two of the programs are unique in Virginia, many of them crossing the disciplines of VCU’s 11 schools and three colleges. The VCU Health brand represents the VCU health sciences academic programs, the VCU Massey Cancer Center and the VCU Health System, which comprises VCU Medical Center (the only academic medical center in the region), Community Memorial Hospital, Children’s Hospital of Richmond at VCU, MCV Physicians and Virginia Premier Health Plan. For more, please visit www.vcu.edu and vcuhealth.org.