Nov. 26, 2002
VCU scientists growing synthetic blood vessels
Share this story
RICHMOND, Va. – Traditional heart bypass surgeries require using veins from the leg to replace damaged blood vessels. Using a nanotechnology developed by Virginia Commonwealth University researchers, doctors soon could be using artificial blood vessels grown in a laboratory to help save half a million lives every year.
The new technology produces a natural human blood vessel grown around a scaffold, or tube, made of collagen. Using a process called electrospinning, VCU scientists are making tubes as small as one millimeter in diameter. That’s more than four times smaller than the width of a drinking straw and six times smaller than the smallest commercially available vascular graft.
VCU Biomedical Engineer Gary L. Bowlin, Ph.D., said patients don’t always have enough spare veins for a heart bypass, and even when they do, complications and failures often result because they are not compatible. “So what’s really needed is a blood vessel you can pull off the shelf,” said Bowlin.
After the scaffold is spun, smooth muscle cells are “seeded” or placed on its surface in a laboratory. The cells grow and within three-to-six weeks the tissue-engineered blood vessel is ready to implant.
Unlike current synthetic plastic blood vessels, collagen is a natural component of the body, allowing cells to grow on its surface and avoid rejection. “The cells are in a happy environment and they’re just going to stay and think ‘I’m a blood vessel, I’m going to act like a blood vessel,’” said Bowlin.
The collagen scaffold is biodegradable and eventually is replaced by the body. Pre-made blood vessels could be made available to emergency rooms where every second counts. Other applications include pediatric surgery where implanted blood vessels must grow with the patient and diabetic patients who often lose blood vessels to vascular disease.
The same collagen electrospinning technology can also be used to regenerate or replace skin, bone, nerves, muscles and even repair spinal cord injuries, according to co-inventor Gary E. Wnek, Ph.D., a VCU chemical engineer. “Anything you want to repair can start from a scaffold. We’re very excited about the potential,” said Wnek.
Practical applications of the new technology could be commercially available within three years.
Subscribe to VCU News
Subscribe to VCU News at newsletter.vcu.edu and receive a selection of stories, videos, photos, news clips and event listings in your inbox.